ms_mint package
Submodules
ms_mint.Mint module
Main module of the ms-mint library.
- class ms_mint.Mint.Mint(verbose: bool = False, progress_callback: Callable = None, time_unit: str = 's', wdir: str = None)[source]
Bases:
object
Main class of the ms_mint package, which processes metabolomics files.
- Parameters:
verbose (bool) – Sets verbosity of the instance.
progress_callback (Callable[]) – A callback for a progress bar.
- Parm wdir:
Working directory
- crosstab(var_name: str = None, index: str = None, column: str = None, aggfunc: str = 'mean', apply: Callable = None, scaler: Callable = None, groupby: str = None)[source]
Create condensed representation of the results. More specifically, a cross-table with filenames as index and target labels. The values in the cells are determined by col_name.
- Parameters:
var_name (str, optional) – Name of the column from mint.results table that is used for the cell values. If None, defaults to ‘peak_area_top3’.
index (str, optional) – Name of the column to be used as index in the resulting cross-tabulation. If None, defaults to ‘ms_file_label’.
column (str, optional) – Name of the column to be used as columns in the resulting cross-tabulation. If None, defaults to ‘peak_label’.
aggfunc (str, optional) – Aggregation function to be used for aggregating values. Defaults to ‘mean’.
apply (Callable, optional) – Function to be applied to the resulting cross-tabulation. If None, no function is applied.
scaler (Callable, optional) – Function to scale the data in the resulting cross-tabulation. If None, no scaling is performed.
groupby (str, optional) – Name of the column to group data before scaling. If None, scaling is applied to the whole data, not group-wise.
- Returns:
DataFrame representing the cross-tabulation.
- Return type:
pandas.DataFrame
- export(fn=None)[source]
Export current results to file.
- Parameters:
fn (str, optional) – Filename, defaults to None
filename (str, optional) – deprecated
- Returns:
file buffer if filename is None otherwise returns None
- Return type:
io.BytesIO
- load(fn)[source]
Load results into Mint instance.
- Parameters:
fn (str) – Filename (csv, xlsx)
- Returns:
self
- Return type:
- load_files(obj)[source]
Load ms_files as a function that returns the Mint instance for chaining.
- Parameters:
list_of_files (str or list[str]) – Filename or list of file names.
- Returns:
self
- Return type:
- load_targets(list_of_files)[source]
Load targets from a file (csv, xslx)
- Parameters:
list_of_files (str or list[str]) – Filename or list of file names.
- Returns:
self
- Return type:
- property ms_files
Get/set ms-files to process.
- Getter:
- Returns:
List of filenames.
- Return type:
list[str]
- Setter:
- Parameters:
list_of_files (str or list[str]) – Filename or list of file names of MS-files.
- property n_files
Number of currently stored ms filenames.
- Returns:
Number of files stored in self.ms_files
- Return type:
int
- property peak_labels
- property progress
Shows the current progress.
- Getter:
Returns the current progress value.
- Setter:
Set the progress to a value between 0 and 100 and calls the progress callback function.
- reset()[source]
Reset Mint instance. Removes targets, MS-files and results.
- Returns:
self
- Return type:
- property results
Get/Set the Mint results.
- Getter:
- Returns:
Results
- Return type:
pandas.DataFrame
- Setter:
- Parameters:
df (pandas.DataFrame) – DataFrame with MINT results.
- run(nthreads=None, rt_margin=0.5, mode='standard', fn=None, **kwargs)[source]
Main routine to run MINT and process MS-files with current target list.
- Parameters:
nthreads (int * None - Run with min(n_cpus, c_files) CPUs * 1: Run without multiprocessing on one CPU * >1: Run with multiprocessing enabled using nthreads threads.) – Number of cores to use, defaults to None
mode (str * 'standard': calculates peak shaped projected to RT dimension * 'express': omits calculation of other features, only peak_areas) – Compute mode (‘standard’ or ‘express’), defaults to ‘standard’
fn (str) – Output filename to not keep results in memory.
kwargs – Arguments passed to the procesing function.
- property status
Returns current status of Mint instance.
- Returns:
[‘waiting’, ‘running’, ‘done’]
- Return type:
str
- property targets
Set/get target list.
- Getter:
- Returns:
Target list
- Return type:
pandas.DataFrame
- Setter:
- Parameters:
targets (pandas.DataFrame) – Sets the target list of the instance.
- version = '1.0.1.dev20'
ms_mint.Chromatogram module
- class ms_mint.Chromatogram.Chromatogram(scan_times: List[float] | ndarray | None = None, intensities: List[float] | ndarray | None = None, filters: List[Filter] | None = None, expected_rt: float | None = None)[source]
Bases:
object
- __init__(scan_times: List[float] | ndarray | None = None, intensities: List[float] | ndarray | None = None, filters: List[Filter] | None = None, expected_rt: float | None = None)[source]
Initialize a Chromatogram object.
- Parameters:
scan_times – Array-like object containing the scan times.
intensities – Array-like object containing the intensities.
filters – List of filters to be applied.
expected_rt – Expected retention time.
- property data
- property selected_peaks
ms_mint.filelock module
A platform independent file lock that supports the with-statement.
- class ms_mint.filelock.BaseFileLock(lock_file, timeout=-1)[source]
Bases:
object
Implements the base class of a file lock.
- _acquire()[source]
Platform dependent. If the file lock could be acquired, self._lock_file_fd holds the file descriptor of the lock file.
- acquire(timeout=None, poll_intervall=0.05)[source]
Acquires the file lock or fails with a
Timeout
error.# You can use this method in the context manager (recommended) with lock.acquire(): pass # Or use an equivalent try-finally construct: lock.acquire() try: pass finally: lock.release()
- Parameters:
timeout (float) – The maximum time waited for the file lock. If
timeout < 0
, there is no timeout and this method will block until the lock could be acquired. Iftimeout
is None, the defaulttimeout
is used.poll_intervall (float) – We check once in poll_intervall seconds if we can acquire the file lock.
- Raises:
Timeout – if the lock could not be acquired in timeout seconds.
Changed in version 2.0.0: This method returns now a proxy object instead of self, so that it can be used in a with statement without side effects.
- property is_locked
True, if the object holds the file lock.
Changed in version 2.0.0: This was previously a method and is now a property.
- property lock_file
The path to the lock file.
- release(force=False)[source]
Releases the file lock.
Please note, that the lock is only completly released, if the lock counter is 0.
Also note, that the lock file itself is not automatically deleted.
- Parameters:
force (bool) – If true, the lock counter is ignored and the lock is released in every case.
- property timeout
You can set a default timeout for the filelock. It will be used as fallback value in the acquire method, if no timeout value (None) is given.
If you want to disable the timeout, set it to a negative value.
A timeout of 0 means, that there is exactly one attempt to acquire the file lock.
Added in version 2.0.0.
- ms_mint.filelock.FileLock
Alias for the lock, which should be used for the current platform. On Windows, this is an alias for
WindowsFileLock
, on Unix forUnixFileLock
and otherwise forSoftFileLock
.
- class ms_mint.filelock.SoftFileLock(lock_file, timeout=-1)[source]
Bases:
BaseFileLock
Simply watches the existence of the lock file.
- exception ms_mint.filelock.Timeout(lock_file)[source]
Bases:
TimeoutError
Raised when the lock could not be acquired in timeout seconds.
- lock_file
The path of the file lock.
- class ms_mint.filelock.UnixFileLock(lock_file, timeout=-1)[source]
Bases:
BaseFileLock
Uses the
fcntl.flock()
to hard lock the lock file on unix systems.
- class ms_mint.filelock.WindowsFileLock(lock_file, timeout=-1)[source]
Bases:
BaseFileLock
Uses the
msvcrt.locking()
function to hard lock the lock file on windows systems.
ms_mint.filters module
- class ms_mint.filters.GaussFilter(sigma=5)[source]
Bases:
Filter
Filter for time series that applies a Gaussian filter.
- class ms_mint.filters.Resampler(tau='500ms', input_unit='seconds')[source]
Bases:
Filter
Filter for time series that resamples the data in a certain frequency.
- class ms_mint.filters.Smoother(windows=None)[source]
Bases:
Filter
Filter for time series that smoothes the x values by running one or more rolling averages.
ms_mint.io module
Funtions to read and write MINT files.
- ms_mint.io.convert_ms_file_to_feather(fn, fn_out=None)[source]
Convert MS file to feather format.
- Parameters:
fn (str or PosixPath) – Filename to convert
fn_out (str or PosixPath, optional) – Output filename, defaults to None
- Returns:
Filename of generated file
- Return type:
str
- ms_mint.io.convert_ms_file_to_parquet(fn, fn_out=None)[source]
Convert MS file to parquet format.
- Parameters:
fn (str or PosixPath) – Filename to convert
fn_out (str or PosixPath, optional) – Output filename, defaults to None
- Returns:
Filename of generated file
- Return type:
str
- ms_mint.io.export_to_excel(mint, fn=None)[source]
Export MINT state to Excel file.
- Parameters:
mint (ms_mint.Mint.Mint) – Mint instance
- Returns:
None, or file buffer (if fn is None)
- Return type:
None or io.BytesIO
- ms_mint.io.ms_file_to_df(fn, read_only: bool = False)[source]
Read MS file and convert it to a pandas.DataFrame.
- Parameters:
fn (str or PosixPath) – Filename
read_only (bool, optional) – Whether or not to apply convert to dataframe (for testing purposes), defaults to False
- Returns:
MS data as DataFrame
- Return type:
pandas.DataFrame
- ms_mint.io.mzml_to_df(fn, read_only=False)[source]
Reads mzML file and returns a pandas.DataFrame using the mzML library.
- Parameters:
fn (str or PosixPath) – Filename
explode (bool, optional) – Whether to explode the DataFrame, defaults to True
- Returns:
MS data
- Return type:
pandas.DataFrame
- ms_mint.io.mzmlb_to_df__pyteomics(fn, read_only=False)[source]
Reads mzMLb file and returns a pandas.DataFrame using the pyteomics library.
- Parameters:
fn (str or PosixPath) – Filename
read_only (bool, optional) – Whether or not to convert to dataframe, defaults to False
- Returns:
MS data
- Return type:
pandas.DataFrame
- ms_mint.io.mzxml_to_df(fn: str | Path, read_only: bool = False, time_unit_in_file: str = 'min') DataFrame | None [source]
Read mzXML file and convert it to pandas.DataFrame.
- Parameters:
fn (Union[str, pathlib.Path]) – Filename
read_only (bool, optional) – Whether or not to convert to dataframe (for testing purposes), defaults to False
time_unit_in_file (str, optional) – The time unit used in the mzXML file (either ‘sec’ or ‘min’), defaults to ‘min’
- Returns:
MS data
- Return type:
Optional[pd.DataFrame]
ms_mint.matplotlib_tools module
- ms_mint.matplotlib_tools.hierarchical_clustering(df, vmin=None, vmax=None, figsize=(8, 8), top_height=2, left_width=2, xmaxticks=None, ymaxticks=None, metric='cosine', cmap=None)[source]
Performs and plot hierarchical clustering on dataframe in dense format.
- Parameters:
df (pandas.DataFrame) – Input data.
vmin (int, optional) – Minimum value to anchor the colormap, otherwise they are inferred from the data and other keyword arguments.
vmin – Maximum value to anchor the colormap, otherwise they are inferred from the data and other keyword arguments.
figsize (tuple, optional) – Size of the main figure in inches, defaults to (8, 8)
top_height (int, optional) – Height of the top dendrogram, defaults to 2
left_width (int, optional) – Width of the left dendrogram, defaults to 2
xmaxticks (int, optional) – Maximum number of x-ticks to display, defaults to None
ymaxticks (int, optional) – Maxiumum number of y-ticks to display, defaults to None
metric (str, optional) – Metric to be used for distance calculation (both axes), defaults to “cosine”
cmap (str, optional) – Matplotlib color map name, defaults to None
- Returns:
Matplotlib figure
- Return type:
matplotlib.pyplot.Figure
- ms_mint.matplotlib_tools.plot_metabolomics_hist2d(df, figsize=(4, 2.5), dpi=300, set_dim=True, cmap='jet', rt_range=None, mz_range=None, mz_bins=100, **kwargs)[source]
- ms_mint.matplotlib_tools.plot_peak_shapes(mint_results, mint_metadata=None, fns=None, peak_labels=None, height=3, aspect=1.5, legend=False, col_wrap=4, hue='ms_file_label', title=None, dpi=None, sharex=False, sharey=False, kind='line', **kwargs)[source]
Plot peak shapes of mint results.
- Parameters:
mint_results (pandas.DataFrame) – DataFrame in Mint results format.
mint_metadata (pandas.DataFrame) – DataFrame in Mint metadata format.
fns (list, optional) – Filenames to include, defaults to None
peak_labels (list, optional) – Peak-labels to include, defaults to None
height (int, optional) – Height of the figure facets, defaults to 4
aspect (int, optional) – Aspect ratio of the figure facets, defaults to 1
legend (bool, optional) – Whether or not to add a legend, defaults to False
col_wrap (int, optional) – Number of columns for sub-plots, defaults to 4
hue (str, optional) – Column name for color groups, defaults to “ms_file”
title (str, optional) – Title to add, defaults to None
dpi (int, optional) – Resolution of generated image, defaults to None
sharex (bool, optional) – Whether or not to share x-axis range between subplots, defaults to False
sharey (bool, optional) – Whether or not to share y-axis range between subplots, defaults to False
kind (str, optional) – Kind of seaborn relplot
- Returns:
Generated figure object.
- Return type:
matplotlib.pyplot.Figure
ms_mint.notebook module
Experimental module to run Mint interactively inside the Jupyter notebook.
code-block:
from ms_mint.notebook import Mint
mint = Mint()
mint.display()
ms_mint.pca module
- class ms_mint.pca.PCA_Plotter(pca)[source]
Bases:
object
Class for plotting Mint PCA results.
- __init__(pca)[source]
Class for plotting Mint PCA results.
- Parameters:
pca (ms_mint.pca.PrincipalComponentsAnalyser) – PrincipalComponentsAnalyser instance
- cumulative_variance_px(**kwargs)[source]
After running mint.pca() this function can be used to plot the cumulative variance of the principal components.
- Returns:
Returns a plotly express figure.
- Return type:
plotly.graph_objs._figure.Figure
- cumulative_variance_sns(**kwargs)[source]
After running mint.pca() this function can be used to plot the cumulative variance of the principal components.
- Returns:
Returns a matplotlib figure.
- Return type:
matplotlib.figure.Figure
- pairplot(n_components=3, hue=None, fig_kws=None, interactive=False, **kwargs)[source]
After running mint.pca() this function can be used to plot a scatter matrix of the principal components.
- Parameters:
n_components (int, optional) – Number of principal components to plot, defaults to 3.
hue (List[str] or str, optional) – Labels used for hue. If string, the data will be taken from the mint.meta dataframe.
- Returns:
Returns a matplotlib figure.
- Return type:
seaborn.axisgrid.PairGrid
- class ms_mint.pca.PrincipalComponentsAnalyser(mint=None)[source]
Bases:
object
Class for applying PCA to Mint instance.
- __init__(mint=None)[source]
Class for applying PCA to Mint instance.
- Parameters:
mint (ms_mint.Mint.Mint, optional) – Mint instance, defaults to None
- run(n_components=3, on=None, var_name='peak_max', fillna='median', apply=None, groupby=None, scaler='standard')[source]
Run Principal Component Analysis on current results. Results are stored in self.decomposition_results.
- Parameters:
on (str, optional) – Column name to use for pca, defaults to “peak_max”
n_components (int, optional) – Number of PCA components to return, defaults to 3
fillna (str, optional) – Method to fill missing values, defaults to “median”
scaler (str, optional) – Method to scale the columns, defaults to “standard”
ms_mint.plotly_tools module
- ms_mint.plotly_tools.plotly_heatmap(df, normed_by_cols=False, transposed=False, clustered=False, add_dendrogram=False, name='', x_tick_colors=None, height=None, width=None, correlation=False, call_show=False, verbose=False)[source]
Creates an interactive heatmap from a dense-formated dataframe.
- Parameters:
df (pandas.DataFrame) – Input data
normed_by_cols (bool, optional) – Whether or not to normalize column vectors, defaults to False
transposed (bool, optional) – Whether or not to transpose the generated image, defaults to False
clustered (bool, optional) – Whether or not to apply hierarchical clustering or rows, defaults to False
add_dendrogram (bool, optional) – Whether or not to show a dendrogram (only with clustered=True), defaults to False
title (str, optional) – Title for figure, defaults to “”
x_tick_colors (str, optional) – Color of x-ticks, defaults to None
height (int, optional) – Image height in pixels, defaults to None
width (int, optional) – Image width in pixels, defaults to None
correlation (bool, optional) – Whether or not to convert the table to a correlation matrix, defaults to False
call_show (bool, optional) – Whether or not to call fig.show() to show image in new browser tab, defaults to False
verbose (bool, optional) – Whether or not to be loud, defaults to False
- Returns:
Returns a plotly image object.
- Return type:
plotly.Figure
- ms_mint.plotly_tools.plotly_peak_shapes(mint_results, mint_metadata=None, color='ms_file_label', fns=None, col_wrap=1, peak_labels=None, legend=True, verbose=False, legend_orientation='v', call_show=False, palette='Plasma')[source]
Plot peak shapes of mint results.
- Parameters:
mint_results (pandas.DataFrame) – DataFrame in Mint results format.
mint_metadata (pandas.DataFrame, optional) – DataFrame in Mint metadata format, defaults to None.
color (str, optional) – Column name determining color-coding of plots, defaults to ‘ms_file_label’.
fns (list, optional) – Filenames to include, defaults to None.
col_wrap (int, optional) – Maximum number of subplot columns, defaults to 1.
peak_labels (list, optional) – Peak-labels to include, defaults to None.
legend (bool, optional) – Whether to display legend, defaults to True.
verbose (bool, optional) – If True, prints additional details, defaults to False.
legend_orientation (str, optional) – Legend orientation, defaults to ‘v’.
call_show (bool, optional) – If True, displays the plot immediately, defaults to False.
palette (str, optional) – Color palette to use, defaults to ‘Plasma’.
- Returns:
Plotly Figure object or None if call_show is True.
- Return type:
plotly.graph_objs._figure.Figure or None
ms_mint.plotting module
ms_mint.processing module
- ms_mint.processing.append_results(results, fn)[source]
Appends results to file.
- Parameters:
results (pandas.DataFrame) – New results.
fn (str) – Filename to append to.
- ms_mint.processing.extract_chromatogram_from_ms1(ms1: DataFrame, mz_mean: float, mz_width: float = 10) DataFrame [source]
Extract chromatogram from MS1 data.
- Parameters:
ms1 – MS1 data as a DataFrame.
mz_mean – Mean m/z value.
mz_width – Width around the mean m/z to extract.
- Returns:
Chromatogram data as a DataFrame.
- ms_mint.processing.extract_ms1_properties(array, mz_mean)[source]
Process MS-1 data in array format.
- Parameters:
array (numpy.array) – MS-1 data slice.
mz_mean (float) – mz_mean value to calculate mass accuracy.
- Returns:
Extracted data.
- Return type:
dict
- ms_mint.processing.get_chromatogram_from_ms_file(ms_file: str, mz_mean: float, mz_width: float = 10) DataFrame [source]
Get chromatogram data from an MS file.
- Parameters:
ms_file – Path to the MS file.
mz_mean – Mean m/z value.
mz_width – Width around the mean m/z to extract.
- Returns:
Chromatogram data as a DataFrame.
- ms_mint.processing.process_ms1(df, targets)[source]
Process MS-1 data with a target list.
- Parameters:
df (pandas.DataFrame) – MS-1 data.
targets (pandas.DataFrame) – Target list
- Returns:
Mint results.
- Return type:
pandas.DataFrame
- ms_mint.processing.process_ms1_file(filename, targets)[source]
Peak integration using a filename as input.
- Parameters:
filename (str or PosixPath) – Path to mzxml or mzml filename
targets (pandas.DataFrame) – DataFrame in target list format.
- Returns:
DataFrame with processd peak intensities.
- Return type:
pandas.DataFrame
- ms_mint.processing.process_ms1_files_in_parallel(args)[source]
Pickleable function for (parallel) peak integration.
- ms_mint.processing.process_ms1_from_numpy(array, peaks)[source]
Process MS1 data in numpy array format.
- Parameters:
array (numpy.Array) – Input data.
peaks (numpy.Array) – Peak data np.array([[mz_mean_1, mz_width_1, rt_min_1, rt_max_1, intensity_threshold_1, peak_label_1], …])
- Returns:
Extracted data.
- Return type:
list
- ms_mint.processing.score_peaks(mint_results)[source]
Score the peak quality (experimental).
1 - means a good shape
0 - means a bad shape
- Parameters:
mint_results (pandas.DataFrame) – DataFrame in ms_mint results format.
- Returns:
Score
- Return type:
float
- ms_mint.processing.slice_ms1_array(array: array, rt_min, rt_max, mz_mean, mz_width, intensity_threshold)[source]
Slice MS1 data by m/z, mz_width, rt_min, rt_max
- Parameters:
array (np.array) – Input MS-1 data.
rt_min (float) – Minimum retention time for slice
rt_max (float) – Maximum retention time for slice
mz_mean (float) – Mean m/z value for slice
mz_width (float (>0)) – Width of slice in [ppm] of mz_mean
intensity_threshold (float (>0)) – Noise filter value
- Returns:
Slice of numpy array
- Return type:
np.Array
ms_mint.standards module
Contains standard column names and other values.
ms_mint.targets module
Everything related to target lists.
- ms_mint.targets.check_targets(targets)[source]
Check if targets are formated well.
- Parameters:
targets (pandas.DataFrame) – Target list
- Returns:
Returns True if all checks pass, else False
- Return type:
bool
- ms_mint.targets.convert_to_seconds(targets)[source]
Convert time units to seconds.
- Parameters:
targets (pandas.DataFrame) – Mint target list to modify.
- ms_mint.targets.diff_targets(old_pklist, new_pklist)[source]
Get the difference between two target lists.
- Parameters:
old_pklist (pandas.DataFrame) – Old target list
new_pklist (pandas.DataFrame) – New target list
- Returns:
Target list with new/changed targets
- Return type:
pandas.DataFrame
- ms_mint.targets.fill_missing_rt_values(targets)[source]
If rt values are missing fill with mean of rt_min, rt_max.
- Parameters:
targets (pandas.DataFrame) – Mint target list to modify.
- ms_mint.targets.gen_target_grid(masses, dt, rt_max=10, mz_ppm=10, intensity_threshold=0)[source]
Creates a targets from a list of masses.
- Parameters:
masses – Target m/z values.
dt – Size of peak windows in time dimension [min]
rt_max – Maximum time
mz_ppm – Width of peak window in m/z dimension [ppm].
- ms_mint.targets.read_targets(fns, ms_mode='negative')[source]
Extracts peak data from csv files that contain peak definitions.
- Parameters:
fns – List of filenames of target lists.
ms_mode – “negative” or “positive”
- ms_mint.targets.standardize_targets(targets, ms_mode='neutral')[source]
Standardize target list.
updates the target lists to newest format
ensures peak labels are strings
replaces np.nan with None
- Parameters:
targets (pandas.DataFrame) – DataFrame in target-list format.
ms_mode (str, optional) – Ionization mode, defaults to “neutral”
- Returns:
DataFrame in formated target-list format
- Return type:
pandas.DataFrame
ms_mint.tools module
- ms_mint.tools.df_diff(df1, df2, which='both')[source]
Difference between two dataframes.
- Parameters:
df1 (pandas.DataFrame) – Reference dataframe
df2 (pandas.DataFrame) – Dataframe to compare
which (str, optional) – Direction in which to compare, defaults to “both”
- Returns:
DataFrame that contains unique rows.
- Return type:
pandas.DataFrame
- ms_mint.tools.find_peaks_in_timeseries(series, prominence=None, plot=False, rel_height=0.9, **kwargs)[source]
_summary_
- Parameters:
series (_type_) – _description_
prominence (_type_, optional) – _description_, defaults to None
plot (bool, optional) – _description_, defaults to False
- Returns:
_description_
- Return type:
_type_
- ms_mint.tools.formula_to_mass(formulas, ms_mode=None)[source]
Calculate mz-mean vallue from formulas for specific ionization mode.
- Parameters:
formulas (list[str]) – List of molecular formulas e.g. [‘H2O’]
ms_mode (str, optional) – Ionization mode, defaults to None
- Returns:
List of calculated masses
- Return type:
list
- ms_mint.tools.gaussian(x, mu, sig)[source]
Simple gaussian function generator.
- Parameters:
x (np.array) – x-values to generate function values
mu (float) – Mean of gaussian
sig (float) – Sigma of gaussian
- Returns:
f(x)
- Return type:
np.array
- ms_mint.tools.get_ms_files_from_results(results)[source]
Extract MS-filenames from Mint results.
- Parameters:
results (pandas.DataFrame) – DataFrame in Mint fesults format
- Returns:
List of filenames
- Return type:
list
- ms_mint.tools.get_targets_from_results(results)[source]
Extract targets dataframe from ms-mint results table.
- Parameters:
results (pandas.DataFrame) – Mint results table
- Returns:
Mint targets table
- Return type:
pandas.DataFrame
- ms_mint.tools.is_ms_file(fn)[source]
Check if file is a MS-file based on filename.
- Parameters:
fn (str or PosixPath) – Filename
- Returns:
Whether or not the file is recognized as MS-file
- Return type:
bool
- ms_mint.tools.lock(fn)[source]
File lock to ensure safe writing to file.
- Parameters:
fn (str or PosixPath) – Filename to lock.
- Returns:
File lock object.
- Return type:
FileLock
- ms_mint.tools.scale_dataframe(df, scaler='standard', **kwargs)[source]
Scale all columns in a dense dataframe.
- Parameters:
df (pandas.DataFrame) – Dataframe to scale
scaler (str, optional) – Scaler to use [‘robust’, ‘standard’], defaults to “standard”
- Returns:
Scaled dataframe
- Return type:
pandas.DataFrame