Overview of user guide¶
MS-MINT: Mass Spectrometry Metabolomics Integration Toolkit¶
Introduction¶
MS-MINT is a powerful Python library designed for comprehensive analysis of mass spectrometry data in metabolomics research. It provides an integrated workflow for processing, analyzing, and visualizing metabolomic datasets.
Key Features¶
1. Data Processing¶
- Support for multiple mass spectrometry file formats (mzXML, mzML, mzHDF)
- Automated peak detection and extraction
- Flexible target list management
- Advanced chromatogram analysis
2. Visualization¶
- Interactive and static plotting
- Heatmaps
- Peak shape visualization
- Chromatogram plotting
- 2D histogram analysis
3. Analysis Capabilities¶
- Peak integration
- Retention time alignment
- Intensity normalization
- Statistical comparisons
Getting Started¶
Installation¶
Basic Workflow¶
from ms_mint import Mint
# Create a Mint instance
mint = Mint()
# Load target list
mint.load_targets('path/to/targets.csv')
# Load mass spectrometry files
mint.load_ms_files('path/to/ms/files/')
# Run analysis
mint.run()
# Visualize results
plotter = mint.plotter
plotter.heatmap()
plotter.peak_shapes()
Core Concepts¶
Target Lists¶
Target lists define the specific compounds or peaks of interest in your analysis. They include:
- Peak labels
- Theoretical m/z values
- Retention time windows
- Intensity thresholds
File Formats¶
Supported input formats:
- CSV
- Excel (.xlsx)
- Mass spectrometry files:
- mzXML
- mzML
- mzHDF
Analysis Steps¶
- Target Definition
- Create a target list with compound information
-
Specify m/z values, retention times, and other parameters
-
Data Loading
- Load mass spectrometry files
- Load target list
-
Configure analysis parameters
-
Peak Extraction
- Automated peak detection
- Integration based on target specifications
-
Quality filtering
-
Visualization
- Multiple visualization options
- Interactive and static plots
- Customizable color schemes and layouts
Advanced Usage¶
Customization¶
- Modify peak detection parameters
- Custom filtering
- Advanced visualization options
Experimental Notebook Interface¶
Performance Considerations¶
- Optimized for large metabolomics datasets
- Supports parallel processing
- Memory-efficient data handling
Best Practices¶
- Data Preparation
- Use high-quality, clean mass spectrometry data
- Create precise target lists
-
Validate input files
-
Parameter Tuning
- Adjust peak detection parameters
- Validate results through visualization
-
Compare multiple analysis runs
-
Reproducibility
- Document all analysis parameters
- Use consistent target lists and settings
- Export and share results
Troubleshooting¶
Common Issues¶
- Incorrect file formats
- Mismatched target list specifications
- Unexpected peak detection results
Debugging Tips¶
- Check input file integrity
- Verify target list format
- Use visualization tools to inspect data
- Consult documentation and example datasets
Contributing¶
MS-MINT is an open-source project. Contributions are welcome!
- Report issues on GitHub
- Submit pull requests
- Share improvements and extensions
Citation¶
When using MS-MINT in your research, please cite the library in your publications DOI: 10.5281/zenodo.12733875
Support¶
- GitHub Repository: https://github.com/LewisResearchGroup/ms-mint
- Issue Tracker: https://github.com/LewisResearchGroup/ms-mint/issues
Disclaimer¶
MS-MINT is provided as-is. Always validate results and consult domain experts.